Ankle Injuries – Sprain, Strains and Fractures

Common conditions, Exercise, Injury, Lifestyle, Pain

Ankle sprain main

An ankle injury is the most common type of injury that may involve the bones of the ankle and other soft tissue structures. Three are three types of injuries that are observed at the ankle:

  • Sprains
  • Strains
  • Fractures

Sprains are injuries to the ligaments that connect one bone to another. An ankle sprain may involve an injury to one or more ligaments that stabilize the ankle and the foot. 

Strains are injuries that involve musculotendinous (muscle and tendon) structures. Both sprains and strains can occur due to over-stretching or tearing of the ligaments and tendons due to sudden twisting of the ankle joint or when excessive forces are applied on them.

Fractures are injuries that involve bones of the ankle joint. It ranges from a simple break in one bone to several fractures, which causes your ankle to move out of place and puts you in great pain.

Who could be at a risk of an ankle injury?

Ankle injuries may occur among,

  • Dancers
  • Sports persons- Gymnasts, basketball players, players participating in jumping sports etc.
  • Women wearing unstable high heels
  • Hypermobile people who already have laxed ankle ligaments 

Types of Ankle injuries

  • Lateral ankle injury

This is the most common injury to the ankle. Often, an inversion sprain could be an associated with a fracture and a strain to the peroneal tendons.  

An inversion sprain happens when the ankle in twisted inwards with an inward rolled foot as shown in Fig 1.

inversion injury

Fig 1: Lateral ankle injury

  • The Medial ankle injury

This type of injury occurs at the inner aspect of the ankle. Like a inversion sprain, the eversion sprain may also be associated with fractures of lower ends of the leg bones and strains to the tibialis anterior muscle.  

Eversion sprain happens when the ankle is twisted out with the foot rolled outwards as shown in Fig 2.

eversion injury

Fig 2: Medial ankle injury

High Ankle Injury

This type of injury is very rare. A high ankle sprain happens when the tibia bone rotates injuring the ligaments that hold the lower end of the two leg bones (tibia and fibula) as shown in Fig 3.

Severe injuries may cause fracture to the lower ends of the leg bones.

syndesmosis injury

Fig 3: High ankle injury

Severity of an ankle sprain 

An ankle ligament sprain can be graded according to the severity of the tear in the ligaments as shown in Fig 4.
 
lateral ankle sprain

Fig 4: Grades of ankle sprain

Sign and Symptoms of Ankle Injury
 
    • Swelling: Increased fluid in the tissue due to inflammation and soft tissue damage.
    • Pain:  Depending upon the severity of the injury and the structures involved, pain intensity can vary. 
    • Redness/ Warmth/ Tenderness: Caused by increased blood flow to the area.
    • Unstable ankle: The affected side feels weak and difficult to weight-bear.
    • Deformity: Severe injuries can cause fractured bones to move out of place and make the ankle look deformed.
Causes of Ankle Injury
Trauma
  • Stepping in a hole or a stone
  • Running on uneven ground
  • Fall or slippage on wet floor
  • Contact injury during sports like basketball, when a player is accidentally hit by an opponent causing the foot to roll inwards as shown in Fig 5.
Basketball

Fig 5: Lateral ankle sprain during basketball

Muscle imbalances

Lack of flexibility in muscles can hamper joint movement. For example, if the calf muscles are very tight, it will affect the stability and mobility of the ankle joint. In such a state, if one engages in any physical activity like running there could be a potential risk of twisting an ankle. Sometimes even lack of warm-up and stretching could be the cause of muscle imbalances.

  • Lack of Postural control

Postural control is defined as the act of maintaining, achieving or restoring a state of balance during any posture or activity.

It helps to maintain a good base of support for balance so that the force of gravity can act on the center of mass (COM) of the body. Centre of mass is the point in the body where the entire body weight is concentrated (located in the lower end of the spine) as shown in Fig 6.

Figure_10_03_05

Fig 6: Line of gravity and base of support

During sports, sudden quick body movements or external forces like a push or a contact by an opponent will affect your balance. If you lack postural controlm you may lose balance and risk hurting your ankle. 

Diagnosis of an ankle injury

Most ankle injuries are usually straightforward ligament strains. However, the clinical presentation of subtle fractures can be similar to that of a ankle sprains and these fractures can be easily missed on initial examination. Fractures are usually detected via X-ray scans. If any fracture is left untreated, it may cause excessive pain and disability to an extent that you may not be able to bear weight on the joint. Therefore, an X-ray or an MRI scan is often recommended to understand the severity of the injury.

For example, a lateral ankle sprain showing fractured bones in an X-ray is shown in fig 7. 

ankle sprain with bone fracture

Fig 7: Lateral ankle sprain with fracture of the lower end of fibula bone

Ankle Injury management

Usually, ligament injuries heal in about 6-12 weeks and fractured bones take about 3-6 months to heal. This is however largely dependent on the severity of the injury and lifestyle of the individual so complete healing time frame may vary. 

Even after the healing process, ankle injuries may cause long term instability if not healed correctly. This may also be the cause of recurrent ankle sprains. An expert assessment of ankle mechanics is very important to decide on how long to protect and rehabilitate an ankle after an injury. The treatment plan will aim to restore the normal functions of the ankle and make return-to-play decisions based on the stability of the ankle thus preventing recurrent ankle injuries.

Advertisements

Ankle 101

anatomy, Ankle, Foot

ankle joint only

The ankle plays an important role in the pattern of lower limb movements both in weight-bearing and non-weight-bearing positions.

Ankle movements: (Refer Fig 1)

  • Plantarflexion (down)
  • Dorsiflexion(up)
  • Inversion (inwards)
  • Eversion (outwards)
dorsi and plantar flexion

Fig 1: Dorsiflexion, Plantarflexion, Eversion and Inversion

Plantar flexion is the movement that describes the pointing of the toes toward the ground, as in standing on one’s toes.

Dorsiflexion is the opposite of plantarflexion and involves pulling the toes up as in walking on one’s heels.

Inversion is inward rolling of the foot towards the body’s midline and eversion is the exact opposite which involves outward rolling of the foot away from the midline of the body.

Joints in relation to movement

The ankle is made up of three distinct joints namely, 

  • Talo-crural joint (Ankle joint)
  • Subtalar joint 
  • Distal Tibiofibular joint (High ankle)
joints of the ankle

Fig 2: 3 types of ankle joints

Talo-crural joint (Ankle joint): It a hinge type of joint that allows movements of dorsiflexion and plantar flexion along one plane.The articulation of the lower ends of the leg bones and one of the tarsal bones (talus) forms the ankle joint.  

Subtalar joint: The movements of Inversion and eversion take place at this joint. It lies beneath the ankle joint and is formed by the articulation between the talus and the calcaneal bone of the foot. 

Distal tibiofibular joint (High ankle): This is a syndesmosis joint between the lower ends of the bones of the leg(tibia and fibula).  A syndesmosis joint is a joint where the bones are connected by ligaments and have minimal movements.

Muscles that cause ankle movements

The muscles from the leg end as tendons that attach to the foot bones. They contract and transfer forces to cause a movement across the ankle joint.

  • Outer muscles of the leg: The peroneal (Peroneus long and peroneus brevis) muscles are present on the outside aspect of the leg as shown in Fig 3. The contraction of the peroneal muscles help bend the ankle down moving the foot downwards (Plantar flexion) as in fig 3.
Peroneal muscles

Fig 3: Peroneal Muscles and Plantar flexion

The peroneals also help to stabilize the big toe as it attaches behind it. It helps to lift the arch and plantar fascia to produce spring-like effect during running and jumping activities.

  • Back muscles of the leg: The calf muscles (gastrocnemius and soleus) and the tibialis posterior muscles are present at the back of the leg as shown in Fig 4.
back of the leg

Fig 4: Calf and Tibialis posterior muscle.

The calf connects to the heel bone by the Achilles’ tendon. When the calf muscles contract they moving the foot downwards (Plantar Flexion). The posterior tibialis help to turn the foot inwards (Inversion). They help to propel the body forwards as the foot pushes on the ground while walking.

  • Front muscles of the leg: The tibialis anterior present in the front of the leg  and attached in the front of the foot as shown in Fig 5.
tibialis anterior muscle

Fig 5: Tibialis anterior muscle and dorsiflexion

The Tibialis anterior muscle pulls the ankle upwards (Dorsiflexion). It plays a role in striking the heel when you take a step forwards in walking.

Ligaments that support the ankle

Apart from muscles, the ankle is stabilized by many ligaments that surround the ankle. 

  • Lateral ligaments (outer ankle ligaments)
  • Medial ligaments (inner ankle ligaments)
  • High ankle ligaments

Lateral ligaments

Lateral ligaments are present on the outer aspect of the ankle that are attached at the anterior (front), lateral (outer side) and posterior (back) parts of the ankle as shown in Fig 6. 

Outer ligaments of the ankle

Fig 6: Lateral Ligaments

  • The Lateral ligaments play an important role to prevent excessive plantar flexion and inversion movements of the foot. 
  • Along with the medial ligaments, they also provide stability to the ankle during weight bearing movements.

Medial ligaments (Inner Ankle Ligaments) 

The medial ligament otherwise known as deltoid ligament is present on the inner aspect of the ankle, as shown in Fig 7. 

Ligaments of the ankle

Fig 7: Medial ligaments (Deltiod ligament)

  • The medial ligaments function as the main stabilizer of the inner aspect of the ankle against shear and rotational forces.
  • They also act to support the inner arch of the foot.

Distal tibiofibular ligaments

The distal tibiofibular ligaments are located above the ankle and connect the high ankle syndesmosis joint as shown in Fig. 8. 

Syndesmotic ligament complex

Fig 8. High ankle ligaments

  • The high ankle ligaments ensure stability between the lower end of the tibia and the fibula.
  • They resist any force that attempt to separate the tibia and fibula.

Risk of injury to the ankle 

Any inflexibility in the ankle may cause inability to perform a movement properly. For example, poor ankle mobility due to tight soft tissue structures can reduce the range of movement at the ankle causing the knees, hips and trunk to over compensate. This may impair the ability of the trunk to load the joints properly hence increasing the risk an injury.